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EXTENSION OF THE LEVI-CIVITA THEOREM TO NONHOLONOMIC SYSTEMS* 

P. CAPODANNO 

The Levi-Civita theorem on stationary solutions of an autonomous canonical system 
which admits invariant relations in involution is extended to nonholonomic systems 
with time-independent constraints. This was obtained using the canonical form of 
Voronets' equations. It is shown that the system can be extended to gyroscopic sys- 
tems. 

1. The canonical form of Voronets' equations. Consider a material system whose 
position is defined by n Lagrangian coordinates Qj and subjected to the action of forces that 
are derivatives of function u (4W . .t %a)> and to the nonholonomic relations 

q,’ = jl hi Oh, . . . t qn) qi’ (k < nv r=k+l,...,n) (1.1) 

We denote the system kinetic energy by T(qi, qr, qi’, qI’) and set 

@(qi, q,,qi’) = T (qi,q,, qr’, {gl b,lq,‘j (i = 1, . . , k, r=k+l, . . . , n) 

The equations of motion are obtained by supplementing Eqs. (1.1) by the Voronets equations 

where the derivatives 8Ti8q,’ are expressed in terms of Qi? cl?> 4i ? * and the quantities Ail(" are 

antisymmetric with respect to indices i and 1. 
We set 

L (q*r p17r Pi') = @ + u, Pi = aLl@i’ 

H (q*r PI, Pi) = $I Piqi' - L (qi, qr* qi’) 
i=l 

and write the Voronets equation in its canonical form 

dqJdt = iWlapi (i = 1,. . ., k) 
n 

0, aH 
dt=-q- Iz 

r=k+l 

bri $ + =$+l $?$g -6’ $ 

(1.3) 

where the derivatives aT/aq,’ are expressed in terms of pit qr,pi. Equation (1.3) is to be 

supplemented by the equation of constraints 

QI’ = e t b,i (ql,. . . 3 qn)G$- (r=k+1,...,n) 

i=l 

(1.4) 

In what follows the symbol D/Dt will denote the time derivative by virtue of system (1.3), 
(1.4). 

Remarks.1'. Function His the first integral of system (1.31, (1.4). Indeed, taking 
into consideration (1.4) and the antisymmetry of quantities Ail(‘), we have DHfD t = 0. 
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2’. The necessary and sufficient condition for function cp(qt, ql,pi) to be the first in- 
tegral of system (l-3), (1.4) is of the form 

n 

(1.5) 
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3O. The condition of stationarity of H is 

ax o aB 
Tg-= ‘apt -0, %=O (i=l,..., k,r=k+1. ,..., n) 

I 

These relations evidently constitute a set of invariant relations for system (x.3), (1.4), 
as shown by a direct test that 

axe linear combinations of MU8q~,0Hl@i, aH/aq, and, consequently, vanish together with them. 

2. Extension of the Levi-Civita theorem to nonholonomic systems.Levi-civita 
had shown /2,3/ that, when an autonomous canonical system has m invariant relations (respect- 
ively, m first integrals) which are in involution, it has mm (respectively warn) particular 
solutions (called stationary) obtained by the integration of ?n first order differential. equa- 
tions of standard form. Let us extend that theorem to system (1.3), (1.4). Assumethatsystem 
fl..3), (1.4) has mindependent of time f invariant relations 

fu (413 . . -s q*, PIT - * *, plcf = 0 (u = 1,. . ., m, m < k) 

which satisfy conditions similar to (1.5) 

Suppose that the m invariant relations are solvable for ~1, . . . . pm 

Pa - (Pa (qz* - * et qn, Pm+1r . . ., pk) = 0 (a = 1, . . ., m) 

Taking into account the relations 

~~~~~=O (u=l,..., m, s=l,..., n) 

(r=ii 

m af, %y3 

F 
KT=O (u=l,...,m, h=m+l,..., k) 

=1 

we transform condition (2.1) to 

(2.2) 

Since the functional determinantoffunctions f=is by assumption nonzero relative to per, 
these conditions reduce to 

F,a = 0 (a, fi = 1, . . ., m) 

Using the implicit expressions for paa we represent conditions (2.1) in the form 
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We differentiate the invariant relations pa = (Pi = 0 with respect to t on the basis of 
Eqs.(1.3) and (1.41, and obtain 

Using the notation 

K h . . *7 Qn9 Pmtlt - . ., Pk) = H (ql,. - ., qnr %?. . .I (Pmr 

Pm+17 . . .I Pk) 

we have 

(2.5) 

-+$E+~~?$ 
p=1 

(0 = 1,. . ., n, h = m + 1,. . ., k) 

from which 

(a=1,...,fn) 

hence relations (2.4) with allowance for (2.3) and (2.5) assume the form 

where it is assumed that the coefficients are defined in terms of ql,...,qn, P,,,+~,..., pk by 
(1.4) and (2.2). Function K thus satisfies the system of Eqs.(2.6) in partial derivatives. 

Let us show that the system consisting of Eqs. (2.2) and equations 

8K aK aK r=o, -=o, _=o 
Pa ej aqT 

(j=m+l,... ,k, r=k+l,..., n) 

represents a set of invariant relations for the system (1.3), (1.4). 
First, using (2.5), we obtain 

(2.7) 
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Differentiation of the system of Eqs.(2.6) with respect to p1 shows that the COeffiCierh 

at afflap, is a linear combination of first order derivatives of K. Finally, we have 

Hence (DlDt) (aKf8p,) is a linear combination of NUapj,aKlaq~, aK/aq, (,i = m + 1,. .., k; r = 
k + 1,. . ., n) and, consequently, vanishes together with them. The proof thatthederivatives 

(D/L%) (aKIaqj) and (DlDt) (aK/aq,) are zero is similar, which proves the result. It follows from 

ENS. (2.6) that Eqs.12.7) yield aKlaqa= 0 (cd = L..,m) , so that the n i_ k - 2m relations 
of (2.7) represent the condition of stationarity of K. 

Thus, if system (1.31, (1.4) has m invariant relations that are solvable for PI,.. .,p,,, 
and satisfy conditions (2.1) or (2.3), the n+ k conditions of stationarity of H reduce to 
n+k-2m equations (2.7). 

Suppose that relations (2.7) are solvable for !,m+l,* * -9 !?krt ‘?k+l, . * *T q,,, Pm+l, * . *I Pk. Then 
Eqs.(2.6) and (2.7) enable us to express these variables in terms of function of ql, . . ..qm. 

We divide system (1.3), (1.4) in two parts 

qT*=xb,(G (i=l. ,..., k; r-k-f-l ,..., n) 
i r 

4a dt _$ (a=1,..-,m) 

The first 2n - m equations necessarily satisfy the considered here values q,,,+l,...rqnrpl, 
* * .f Pk; by substituting in aHlap, for them functions of ql,..., p;n we obtain a system of 

first order differential equations of standard form which are used for determining Q,... , qm 
as functions of t, and of mconstants of integration. Substitution of the first integral for 
any of the invariant relations results in the appearance of a new constant. 

We have thus obtained the following extension of the Levi-Civita theorem to nonholonomic 
systems. 

Theorem. If system (1.3), (1.4) admits m invariant relations (respectively, AZ first 
integrals) solvable for m parameters pl,..., pm and satisfies conditions (2.1) or (2.31,then 
it has CO" (respectively, mam) particular solutions that are determined using m firstorder 
equations of standard form. 

When there is only a single invariant relation (rn = l), conditions (2.1) or (2.3) are 
evidently automatically satisfied. 

3. Example. Consider a heavy sphere of radius a and mass m, whose center of mass G 
coincides with its geometric center, and the mass is symmetrically distributed relativetothe 
diameter Ge. Let C be the sphere moment of inertia about GZ and A the moment of inertia 
about the diameter normal to GS . The sphere rolls without slipping on the horizontal plane 

ZlG,Y, . We denote by air the upward directed vertical with unit vector zl. As parameters 
we have coordinates =,Y of point G and Euler's angles O,rp,$. 
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Let ve be the velocity of point C, and 6t and (I be the sphere instantaneous snguiar 
velocity and moment of momentum about point C, respectively. The equations of motion arc 

where c is the 

Combining 

v, -7 an >; 2, 
1 

fi + lrlw%1 x (Q x 2,) F- f 

vector constant of integration. The energy integral is of the form 

n-d2 + m,e (Q x rl)" = h 

it with Eq.(3.2) we obtain 

R.cm h 

($.j) 

(3.2) 

(3.3) 

Let (cO,O,cl) be components of e (by a suitable selection of axis Clzl the second component 
can be reduced to zero). Formula (3.3) of form 

f 5~ co (H’cos*+ rg’ sin 0 sin%) -I- c1 (*.i- cp'eos 8) -h = 0 (3.4) 

is used as the invariant relation. 
Integration of the problem reduces to quadratures /4,5/, We shall show that the above 

theorem enables us to obtain particular solutions. 
Equation (3.1) yields 

hence 

zf - a@' sin$- cp'sia fIcos$) = 0, y’ + a (0’ cos$ I_ ‘p’sin 0 sin*) = 0 (3.5) 

28 = (A + ma8)P + (A+‘2 + ma*cp“+i~.G 0 + C (I#. cos 0 + P’)~ 

(in this case Voronets' equations reduce to Chaplygin's equations /l/l. 
We denote by ~s,~,,p~ the variables conjugates of O,m,q and obtain 

pi? 
*=z(A+ maz) + Y& {(Asin* + C cosaO)p~ps - 2 cos Opope + (C + ma2 sin* 0) pli_ 

A = [CA -+ mae (A sine 8 -+ C u?se @]SiB’ fl 

and (3.4) assumes the form 

fr~{(c,sin9sin~+~c,c*sB)f(Asin28+CcosZO)p,- Ccos$p,]+ 

COP@ ws Pp 

(3.6) 

cl [-- C cos Bp, -{- (C + mazsin28) p+]) + A - II -= 0 

With condition (3.6) satisfied, the conditions of stationarity of H are written in sym- 
bolic form as Ui-Mnsf =O, where h is an undetermined multiplier. From this 

-Wsin~+q~‘sinUcosII,=O 

pcJ= hco cos 11‘, p, =h(cosin8sin*+c, cos6), 

Representing (3.2) in the form of its projection on the 
(3.7) we obtain 

8' wse + q= 0 

(3.7) 

PC= & (3.8) 

axis O,y, and taking into account 

(3.9) 

which implies that 

pm = maa sina Be', pQ = A sin*8* 

Hence using (3.8) we have 

-=------Asin8sin*fcos6 p, ma* dq 

P* A d\l, - cl 

and, finally, taking into account (3.9) we obtain 

A+maz CL -X---T) (3.10) 

Formulas (3.9) and (3.101 yield 

hence (a is the constant of integration) 
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COS$ 
COS(~--@)=- 

I/VP+ 
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(3.11) 

Differentiation of (3.10) with respect to time yields 

Using this formula and also (3.9) and (3.4) we obtain for 0 the differential equation 

qp’ 
y*+ sina Q =h’ (hr=+oy(l+-$&r)]-l) (3.12) 

Consequently 

ctgrl, = - 1/- 
Y= + 1 
y tg NV/y* -I- 1 (t - @I (3.13) 

where 5 is the new constant of integration. Conditions (3.5) with allowance for (3.71, (3.9), 
and (3.12) assume the form 

2' = 0, B' = ayh’ 

i.e. point G moves uniformly along a straight line parallel to 41/I. 
Thus 001 motions of the sphere have been indicated; similar results were obtained by 

Agostinelli /5/. 

4. One generalization. Let us now show that the Levi-Civita theorem can be extended 
to a material system whose position is determined by n Lagrangian coordinates ql,..., q,,, and 
which is subjected to forces defined by derivatives of function IJ (QI.. . -7 qn) and, also, to 
gyroscopic forces (this result was obtained in /6/ for systems of a less general form and, be- 
cause of an error in calculations, only for particular cases). 

Motions of this system are defined by the Lagrange equations 

11 

--= 
c gikqk' (f = 1, . . . , n) 

k-1 

where L (qi, qt’) is the Lagrangian, and gik are continuously differentiable functions of PI,.. 

., qkr ql’, - - *I qk’ which satisfy conditions g,, = -ggki (i, k = i,..., n). 
Setting 

a.5 H n 
pi=Bg;, = 

c PiQi’ - L 
i==l 

shows that the equations of motion can be represented in the canonical form 

where gik is now expressed in terms of Pi, Pi. 
Assume that system (4.1) has m independent of time t invariant relations 

fU (qr,. . ., qn, h. . ., PA = 0 b = 1,. . ., m < n) 

that satisfy the conditions 

(4.1) 

(4.2) 

where (fU, f,) are Poisson's brackets of f,, and f,. 
Let us carry out calculations as in Sect.2, and assume that m invariant relations are 

solvable for pl,..., pm 

pa - cpa kl,. . ., qn, P~+~,. . ., pd = 0 (a = 10 . . , m) 

Conditions (4.2) assume the form 

(4.3) 
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Differentiating with respect to time relations (4.3) with allowance for (4.1) and intro- 
ducing the function 

we obtain 

(4.5) 

where ga Xid gjh are expressed in terms of q%,..., qnrpm+lv . . . . pn using (4.3). Hence K 
satisfies the System of differential equations with partial derivatives (4.5). 

Moreover, 

yield a set of 

it is possible to show that Eqs.(4.31-and 

aKl8pj = 0, dKloqj == 0 (j = m + 1,. . ., n) 

invariant relations for system (4.1). For example, we have 

(4.6) 

hence (Df Dt) (8Kib’pj) is a linear combination of first partial derivatives of K. 
It follows from Eqs.(4,5) that Eqs.(4.6) imply that aKla4;, = 0 {a = 1,. . ., m). Because 

of this the conditions of stationarity of K reduce to 2(n-mm) conditions (4.6). If we 
assume that Eqs.(4.6) are solvable for qh, ph (k = m -+ i,..., n), then Eqs.(4.3) and (4.6) en- 
able us to express qm+l,. . ., qn, PI,. . ., pn in terms of functions of ql,. . . , qnz. Substituting 
these into the equations 

dq,fdt’ = aHlap, (a = 1,. . ., m) 

we obtain PI,..., qm in the form of functions of t,and mconstants of integration. 

Theorem. If system (4.1) has m invariant relations (respectively, m first integrals) 
solvable for m parameters pi and satisfy condition (4.2) or (4.41, it has cam (respectively, 
co""') particular solutions that are obtained as the result of integration of m first order 
equations of standard form. 

to 

1. 
2. 

3. 

4. 

5. 

6. 

The last theorem includes, as a particular case, the extension of the Levi-Civita theorem 
nonholonomic systems defined by Chaplygin's equations. 
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